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Abstract

This course is a relatively short introduction to numerical computational
methods relevant to continuous media for solving partial differential equa-
tions (PDE) problems. As the finite element method is by far the most
widely used method at present, it naturally forms the major part of the
course. However, other classical methods, such as the boundary element
method, are described in some detail. It is essential to refer to more com-
plete works to deepen these notions [14] [19] [20] [8] [13].
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Foreword

This course is a modest introduction to numerical modeling in continuous
media. It is more focused on pedagogy than on demonstrative rigour1. Only
those details deemed essential by the author for a first approach are provided.
It is recommended to refer to more complete works to deepen these concepts
[14] [19] [20] [8], [13], etc. It has been more convenient for the author to
illustrate this course with examples from thermomechanics, although the
methods presented here cover all areas requiring the solution of PDEs in
continuous media.

1. Introduction

1.1. Background

In scientific research it is often a question of

describe and explain to predict

Reliable prediction methods are therefore essential for the advancement of
knowledge.

1.1.1. Typical problems

The problems encountered in continuous media generally concern diffu-
sion, electrical or thermal conduction, fluid mechanics and solid mechanics.
These problems can be coupled as for example :

+ diffusion of a fluid in a solid - the fluid content changing the properties
of the solid,

+ self-heating of a solid due to mechanical loading - temperature chang-
ing mechanical properties,

+ interactions between fluid and structure such as the effect of swell on
an oil platform - boundary conditions on the solid depend on the action of
a fluid,

+ etc.
Problems can be of the steady state or transient type.

1.1.2. Status of numerical modelling among possible investigation methods

The methods of scientific investigation for the purpose of increasing
knowledge are essentially :

+ experimental or observational campaigns and data processing,
+ analytical models,
+ numerical models.

1Although pedagogy most probably requires a lot of rigour, but a reasonable compro-
mise must be made.
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These methods complement each other since it is necessary to validate the
prediction tools. The diagram in Fig. 1 illustrates the different possible
interactions between these methods. For each problem and its specificities,
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Figure 1: Possible investigation methods and validations.

the situation must be analysed. Depending on the discipline, some choices
may be more frequents than others. Let us mention some criteria of choice
to develop a scientific approach :

+ what may make the analytical result unattainable within a given time
frame :

= complex, non-linear constitutive equations, ...
= complex boundary conditions :

- complex geometry,
- complex boundary conditions.

+ which may make the experimental result unreachable within a given
time :

= coupled phenomena with difficult decoupling, ...
= cost (e , $, ...)
= duration
= risk
= possibility of experimentation (science of the earth and the universe,

medicine, ...)
Numerical models can then overcome these difficulties. They can eventually
validate each other, usually partially for the common problems they can
address. However, to allow for bilateral validation, they must be sufficiently
different conceptually.

1.2. Classical constitutive equations

Partial differential equations (PDEs) are used in the formulations of the
laws.

5



1.2.1. Balances and conservation

The expressions of the vector operators used here can be found in Ap-
pendix A. Here are the most commonly encountered conservation or equi-
librium equations:

This equation translates the dynamic equilibrium in deformable solid me-
chanics: −→

div(σ) +
−→
f − ρ−→γ =

−→
0 (1)

where σ is the Cauchy stress tensor ("real stresses"),
−→
f are the body forces

(for instance
−→
f = ρ−→g where −→g is the acceleration of gravity and ρ the

density of the material) and −→γ the acceleration of matter.

This equation reflects heat conduction and thermal equilibrium:

div(−→q ) − c
∂T

∂t
= 0 (2)

where −→q denotes the heat flux, c the mass heat, T the temperature and t
the time. The equation for the conduction of electricity is analogous.

Among the conservation equations are those called Navier-Stokes equations.
For example, for viscous compressible fluids conservation of mass implies:

∂ρ

∂t
+ ρdiv(

−→
V ) = 0 (3)

and the conservation of momentum implies:

ρ
∂

−→
V

∂t
= ρ

−→
f − −−→

grad(p − η

3
div(

−→
V )) + η∇2(

−→
V ) (4)

where
−→
V denotes the velocity of the fluid, ρ its density, η its viscosity,

−→
f

the volume forces, p the pressure and t the time. For a fluid, incompress-

ibility is expressed by div(
−→
V ) = 0 where

−→
V is the velocity of the fluid. For

viscous incompressible fluids, the Navier-Stokes equation for conservation of

momentum thus becomes ρ∂
−→
V

∂t = ρ
−→
f − −−→

grad(p) + η∇2(
−→
V ).

etc.

1.2.2. Behaviour laws

Behaviour laws or behaviour equations establish an observed link be-
tween stresses and their effects.

σ = C ǫ denotes linear elastic behaviour in solid mechanics. σ designates the

stress tensor, ǫ the strain tensor and C the compliance tensor. The latter is
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of order 4 since stresses and strains are tensors of order 2 and it can describe
anisotropic behaviour.

The equation div(−→q ) = −λ
−−→
grad(T ) is called Fourier’s law and expresses the

thermal conduction. As div(
−−→
grad)() = △(), equation 2 becomes lambda △

(T ) + cpartialT
partialt = 0.

dev(σ) = η dev(ǫ̇) translates the behaviour of a newtonian fluid, i.e. its
viscosity η does not depend on the shear rate ǫ̇∂t.

etc.

1.3. Boundary conditions

The boundary conditions deal with the limits of the spatial domain con-
cerned and the temporal domain concerned.

1.3.1. Spatial boundary conditions

Conditions can be mixed in the same area.

σ.−→n =
−→
T xpresses oriented surface force conditions, in N/m2, where −→n

denotes the outgoing surface normal and
−→
T the prescribed pressure condi-

tion.

−→q .−→n = h defines an outgoing or incoming heat flow.

−→
U =

−−→
UCL defines a given displacement.

−→
V =

−−→
VCL defines a given speed.

etc.

1.3.2. Time boundary conditions

The initial conditions describe the imposed states and evolutions as a
function of time.

−→
F (t) =

−→
F0 at t = 0 expresses for example the initial value of a force.

−→
U (t) =

−→
U0 at t = 0 expresses for example the initial value of a displace-

ment.
−→
U (t) =

−→
U0 sin(ωt) expresses, for example, that the evolution of the

displacement is harmonic with pulsation ω and is equal to 0 at t = 0.

−→
V (t) =

−→
V0 at t = 0, expresses for example the initial value of a speed.

Ü(t) =
−→
0 , expresses for example that the material acceleration is zero at

7



the start of the calculation.

T (t) = T0 at t = 0, expresses for example that the initial temperature is T0.

etc.

For further information, see for example [16], [5], [12], [18] et [11].

2. General methods of resolution

NB. This is only a list of entry points with some key words. More
information can be found for example in [12] [14] [13].

We are looking for the best possible solution
−→̃
U (P ), where P designates

a point of coordinates (x, y, z), i.e. the solution which is the closest possi-

ble to the exact solution designated by
−→
U (P ), this last one not necessarily

being known. The vector
−→
U (P ) can have several components. For example−→

U (P ) = (ux, uy, uz, T )P if we are looking for the displacement according to
(−→x , −→y , −→z ) and the temperature T of point P .

In a domain D we give ourselves a set of functions φi(P ). This set is
called a "functional base". These functions must be continuous, respect the
boundary conditions and satisfy completeness. They can also have various
properties according to the imperatives and conveniences of use such as
derivability, normality, orthogonality, etc. Polynomials, Taylor series and
harmonic functions are often used. The problem now comes down to finding

the coefficients ai which best satisfy a given criterion (
−→̃
U (P ) as close as

possible to
−→
U (P ) in the sense of the criterion we have given ourselves) and

such that:

ũx(P ) =
N

∑

i=1

axi φi(P ) (5)

of course the same applies to the other components of the
−→̃
U (P ), ũy(P ) =

∑N
i=1 ayi φi(P ), ũz(P ) =

∑N
i=1 azi φi(P ) and T̃ (P ) =

∑N
i=1 aT i φi(P ). The D

domain can be discretised into subdomains as in the finite element method.
It is then a question of obtaining a linear system of equations where the
coefficients aqi will be the unknowns, q designating the component (x, y,
z or T ...) and i the coefficient of the function φi. It is obvious that the
φi-functions must be able to describe the fields adequately, starting with a
uniform field. A common feature of various approximation methods is to
introduce an error function and then to minimise this error function as best

as possible, denoted by err(P ) = E(
−→̃
U (P )). The error is integrated on the

domain D and we give ourselves a weighting wi. As we wish to obtain the
minimal error, we try to satisfy:
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∫

D

err(P ) wi(P ) dv = 0 (6)

This gives an equation and we have several unknowns aqi. We must therefore
give ourselves several suitable weighting functions wi to obtain a system
where there are as many equations as there are unknowns.

2.1. Galerkin’s method

Galerkin’s method was proposed around 1915. It consists in using as a
weight the φi function itself, i.e. wi(P ) = φi(P ). As it can be shown that
the error committed is orthogonal to the approximation subspaces, we can
write that:

∫

D

err(P ) φi(P ) dv = 0 (7)

This method provides a priori as many equations as functions φi.

2.2. Miklin’s method

Miklin’s method consists of finding the solution to a problem by least
squares.

∂

∂aqi

∫

D

err2(P ) dv =

∫

D

err(P )
∂err(P )

∂aqi
dv = 0 (8)

this corresponds to posing wi(P ) = partialerr(P )
∂ai

. This method provides as
many equations as there are coefficients aqi.

2.3. Collocation method

The point collocation method consists of finding the solution of a problem
that passes exactly through given points Pi.

∫

D

err(M)δ(
−−→
OM − −−→

OPi) dv = err(Pi) = 0 (9)

where δ() denotes the Dirac function. This amounts to posing wi(P ) =

δ(
−−→
OM − −−→

OPi). This method provides as many equations as there are Pi

points. An example of the collocation method can be found in [13] applied
to elasticity for a crack in a plane infinite medium.

2.4. Ritz method

The Ritz method was proposed around 1909. It consists in finding the

solution of a problem in its variational form, i.e. δV = 0 where V (
−→
U ) =

∫

D
L (

−→
U ,

−→
U ′,

−→
U ”, ...) where L designates the Lagrangian of the system. The

equilibrium position is sought by looking for the stationarity which is ex-
pressed by:

∂L (
−→̃
U )

∂aqi
= 0 (10)
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This amounts to posing wi = 1 and err(P ) = L (P ). This method provides
as many equations as there are coefficients aqi.

NB. In some cases, e.g. elasticity functions, the Ritz and Galerkin meth-
ods are equivalent.

2.5. Meshless method, diffuse element, ...

Methods based on unknown nodal values but without meshing, (mesh-
less, diffuse element method, element-free Galerkin method, ...), exist and
sometimes represent an interesting alternative for example to the finite ele-
ment method. I recommend the reading of https://pdfcoffee.com/meshlesspdf-
pdf-free.html to discover these methods, advantages and disadvantages.

3. Finite element method

3.1. Nodes, elements and connectivity

The nodes are the points in space where we want to evaluate unknowns
(i, j, k, l, ... in lower case in Fig. 2). The nodes are used as support for the
finite elements. A finite element (C, D, E, F, ... in upper case in Fig. 2)
is a spatial domain in which the values of the unknowns are interpolated
from the nodal values. The whole constitutes a mesh of the domain D . A
mesh can consist of several different types of elements. The connectivities

m
n

p

o

i
j

l

k

q
r

s

D

C E

F

G

H

y

x

Figure 2: Two-dimensional spatial discretization of a surface. The mesh is composed of 5
quadrilaterals with four nodes and 1 triangle with 3 nodes.

table describes the organisation of the mesh. The order of the nodes must
respect the convention chosen by the software, for example the element E is
described by turning clockwise by (i, j, n, m) and not (i, j, m, n) in order to
be able to define a quadrilateral properly and easily its interior and exterior.
The elements can be one-dimensional, two-dimensional or three-dimensional
and have different numbers of nodes for the same geometrical shape as shown
in Fig. 3.
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element node 1 node 2 node 3 node 4

C s i m l
D l m q p
E i j n m
G k o n j
H n o r q
F m n q

Table 1: Connectivity table for the mesh of Fig. 2.

Figure 3: Examples of elements: beam with 2 nodes, triangles with 3 and 6 nodes, quadri-
laterals with 4, 8 and 9 nodes, tetrahedrons with 4 and 10 nodes, cubes with 8 and 20
nodes.

3.2. Interpolation fonction

The interpolation function, sometimes referred to as shape function, is
used to describe the evolution of a variable within the element knowing only
the value it takes at the nodes. For example, for a quadrilateral with 4
nodes, if q(a, b) denotes the variable with a ∈ [−1, +1] and b ∈ [−1, +1],
qi = q(−1, +1), qj = (+1, +1), qn = q(+1, −1) and qm = q(−1, −1) de-
note respectively the value of this variable at nodes i, j, n, and m then an
interpolation function can be defined by:

q(a, b) =
qi (1 − a)(1 + b)

4
+

qj (1 + a)(1 + b)

4

+
qn (1 + a)(1 − b)

4
+

qm (1 − a)(1 − b)

4
(11)

The interpolation functions must:
- allow simple calculations,
- allow to represent a uniform field,
- have properties such as continuity and derivability.

3.3. Real space, parametric space

The interpolation function is defined in the parameter space. The real
space can have any form as shown in Fig. 4. Let us denote by Q(x, y)

11



the function corresponding to q(a, b). It is then a question of being able to
describe the evolutions of the variable q in the real space of different form. To
do this, we can use the same interpolation function for the spatial positions
and the evolution of the variable q. The element is then isoparametric and
q(a, b) = Q(x(a, b), y(a, b)) leads to:

x(a, b) =
xi (1 − a)(1 + b)

4
+

xj (1 + a)(1 + b)

4

+
xn (1 + a)(1 − b)

4
+

xm (1 − a)(1 − b)

4
(12)

where (xi, yi), (xj , yj), (xm, ym) and (xn, yn) are respectively the coordinates
of nodes i, j, m and n. Similarly:

y(a, b) =
yi (1 − a)(1 + b)

4
+

yj (1 + a)(1 + b)

4

+
yn (1 + a)(1 − b)

4
+

ym (1 − a)(1 − b)

4

i j

nm

i
j

m

n

y

xa

b

a

b

Figure 4: Parametric space (left) and real space (right).

In order to solve PDE’s, it is necessary to differentiate in parametric
space in order to follow the evolutions in real space corresponding to the
evolutions in parametric space and vice versa. It is therefore necessary to
calculate dQ(x, y) = ∂Q

∂x dx + ∂Q

∂y dy. By expanding, we obtain:

dQ(x(a, b), y(a, b)) =
∂Q

∂x
(
∂x

∂a
da +

∂x

∂b
db) +

∂Q

∂y
(
∂y

∂a
da +

∂y

∂b
db)

dQ(x(a, b), y(a, b)) = (
∂Q

∂x

∂x

∂a
+

∂Q

∂y

∂y

∂a
)da + (

∂Q

∂x

∂x

∂b
+

∂Q

∂y

∂y

∂b
)db
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et
[

∂Q

∂a
∂Q

∂b

]

=

[

∂x
∂a

∂y
∂a

∂x
∂b

∂y
∂b

] [

∂Q

∂x
∂Q

∂y

]

= J

[

∂Q

∂x
∂Q

∂y

]

J is called the Jacobian matrix of the transformation. Its inverse is easily
identified.

J =

[

∂x
∂a

∂y
∂a

∂x
∂b

∂y
∂b

]

J−1 =

[

∂a
∂x

∂b
∂x

∂a
∂y

∂b
∂y

]

(13)

Since Q(x(a, b), y(a, b)) = q(a, b):

−−→
grad(q) =

[

∂q
∂a
∂q
∂b

]

=

[

∂q
∂x

∂x
∂a + ∂q

∂y
∂y
∂a

∂q
∂x

∂x
∂b + ∂q

∂y
∂y
∂b

]

=

[

∂x
∂a

∂y
∂a

∂x
∂b

∂y
∂b

] [

∂Q

∂x
∂Q

∂y

]

= J
−−→
grad(Q) (14)

and vice versa
−−→
grad(Q) = J−1−−→

grad(q).

3.4. Isoparametric element and jacobian matrix

In order to solve PDEs, it is necessary to differentiate in parametric space
in order to follow the evolutions in real space corresponding to the evolutions
in parametric space. It is therefore necessary to calculate dx(a, b) = ∂x

∂ada +
∂x
∂b db et dy(a, b) = ∂y

∂ada + ∂y
∂b db:

[

dx
dy

]

=

[

∂x
∂a

∂x
∂b

∂y
∂a

∂y
∂b

] [

da
db

]

= JT

[

da
db

]

dx(a, b) =
xi [−(1 + b)da + (1 − a)db]

4
+

xj [(1 + b)da + (1 + a)db]

4

+
xn [(1 − b)da − (1 + a)db]

4
+

xm [−(1 − b)da − (1 − a)db]

4
(15)

and

dy(a, b) =
yi [−(1 + b)da + (1 − a)db]

4
+

yj [(1 + b)da + (1 + a)db]

4

+
yn [(1 − b)da − (1 + a)db]

4
+

ym [−(1 − b)da − (1 − a)db]

4

This makes it possible to calculate the Jacobian matrix in the case of the
chosen interpolation:

J11 =
∂x

∂a
= [xj − xi + xn − xm + b(xj − xi + xn − xm)]/4

J12 =
∂y

∂a
= [yj − yi + yn − ym + b(yj − yi − yn + ym)]/4

J21 =
∂x

∂b
= [xi + xj − xn − xm + a(xj − xi + xn − xm)]/4
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J22 =
∂y

∂b
= [yi + yj − yn − ym + a(yj − yi − yn + ym)]/4

Conversely, we get:
[

da
db

]

=

[

∂a
∂x

∂a
∂y

∂b
∂x

∂b
∂y

] [

dx
dy

]

= (J−1)T

[

dx
dy

]

(16)

3.5. Gradient of an interpolated variable computation

3.5.1. General case

In order to solve the PDEs, it is necessary to calculate, among other
things, the gradients of the variables, for example the temperature in order
to know the flux or the displacements in order to know the deformations. For
example, let us calculate the deformations for a plane problem in the case
of small perturbations hypotheses (S. P. H.).2 If the displacement according
to −→x , is designated by u then it comes: ǫxx = ∂u

∂x = ∂u
∂a

∂a
∂x + ∂u

∂b
∂b
∂x where ǫxx

represents the longitudinal strain according to −→x . Similarly, ǫyy represents
the longitudinal strain according to v and the displacement along −→y , ǫyy =
∂v
∂y = ∂v

∂a
∂a
∂x + ∂v

∂b
∂b
∂x . The shear strain, referred to as ǫxy = 1

2γxy, is given

by ǫxy = 1
2(∂u

∂y + ∂v
∂x) and is calculated in a similar way, i. e. γxy = 2ǫxy =

∂u
∂a

∂a
∂y + ∂u

∂b
∂b
∂y + ∂v

∂a
∂a
∂x + ∂v

∂b
∂b
∂x . Note that these equations show the terms of J−1.

Let us return to the q notation of the interpolation where q plays the role
of the displacement u or the displacement v in an elasticity problem. The
derivatives of q, the latter being represented by the interpolation function,
in the parameter space gives:

∂q(a, b)

∂a
=

qi (−1 − b)

4
+

qj (1 + b)

4
+

qn (1 − b)

4
+

qm (−1 + b)

4

∂q(a, b)

∂b
=

qi (1 − a)

4
+

qj (1 + a)

4
+

qn (−1 − a)

4
+

qm (−1 + a)

4

which can be put in the form:

[

∂q(a,b)
∂a

∂q(a,b)
∂b

]

=

[

Ni,a Nj,a Nn,a Nm,a

Ni,b Nj,b Nn,b Nm,b

]

(a,b)











qi

qj

qn

qm











(17)

By combining 13 and 17 we finally obtain:

−−→
grad(Q) =

[

∂Q

∂x
∂Q

∂y

]

=

[

J−1
11 J−1

12

J−1
21 J−1

22

] [

Ni,a Nj,a Nn,a Nm,a

Ni,b Nj,b Nn,b Nm,b

]











qi

qj

qn

qm











(18)

2SPH stipulate that the displacements are small and the strains are small.
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By replacing Q by u and then by v, the two components of displacement
in the plane, we can calculate the deformations. In the same way, Q can
be replaced by T , the temperature, for the calculation of heat flux, etc. If
the mechanical behaviour, the elastic constants for example, depends on the
temperature for a thermomechanical model then there will necessarily be 3
unknowns per node, u, v and T and the calculation will be said to be coupled
thermomechanical.

3.5.2. The case of plane elasticity: example of a plane problem with two
unknown components

For a calculation of deformations in the plane, the unknowns associated
with the element considered here - a quadrilateral with four nodes - are
therefore eight in number: ui, uj , un, um, vi, vj , vn and vm. For the whole
problem, a vector will be constituted by all the unknowns, essentially3, the
displacements according to −→x and −→y at the nodes. Let us therefore consider
the vector of unknowns and deduce the deformations. The partial derivatives
in the parameter space are given by:











∂u
∂a
∂u
∂b
∂v
∂a
∂v
∂b











=











Ni,a Nj,a Nn,a Nm,a 0 0 0 0
Ni,b Nj,b Nn,b Nm,b 0 0 0 0

0 0 0 0 Ni,a Nj,a Nn,a Nm,a

0 0 0 0 Ni,b Nj,b Nn,b Nm,b







































ui

uj

un

um

vi

vj

vn

vm





























(19)

The strains in real space are given by:











∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y











=











J−1
11 J−1

12 0 0

J−1
21 J−1

22 0 0

0 0 J−1
11 J−1

12

0 0 J−1
21 J−1

22





















∂u
∂a
∂u
∂b
∂v
∂a
∂v
∂b











(20)

The tensor of deformations in the plane is given by:







ǫxx

ǫyy

2ǫxy






=







1 0 0 0
0 0 0 1
0 1 1 0

















∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y











(21)

Recall that ǫ is symmetric by construction and that 2ǫxy = γxy. By associ-
ating 1 to −→x ⊗ −→x and 2 to −→y ⊗ −→y and 3 to −→x ⊗ −→y , and renaming the 8

3We will see later how to deal with an unknown force, such as a support reaction,
associated with a known displacement.

15



unknowns qr we can put the equations 19, 20 and 21 in the form:







ǫ1

ǫ2

ǫ3






=







ǫxx

ǫyy

2ǫxy






= B





























ui

uj

un

um

vi

vj

vn

vm





























= B





























q1

q2

q3

q4

q5

q6

q7

q8





























which defines the matrix [B] that can be more easily manipulated in the
form:

ǫg =
8

∑

r=1

Bgr qr (22)

with

[B] =

[

1 0 0 0
0 0 0 1
0 1 1 0

]





J
−1
11

J
−1
12

0 0

J
−1
21

J
−1
22

0 0

0 0 J
−1
11

J
−1
12

0 0 J
−1
21

J
−1
22





[

Ni,a Nj,a Nn,a Nm,a 0 0 0 0
Ni,b Nj,b Nn,b Nm,b 0 0 0 0

0 0 0 0 Ni,a Nj,a Nn,a Nm,a

0 0 0 0 Ni,b Nj,b Nn,b Nm,b

]

3.6. Use of a law of behaviour: example of Hooke’s law

The next step is to use a law of behaviour. Indeed, to satisfy the con-
ditions of equilibrium of mechanics, it is necessary to calculate the forces
whose sum must cancel out. These forces are induced in the material by
the strains. In the case of linear elasticity, Hooke’s law links deformations
to stresses:

σ1 = σxx = 2µǫxx + λ(ǫxx + ǫyy + ǫzz)

σ2 = σyy = 2µǫyy + λ(ǫxx + ǫyy + ǫzz)

σ3 = σxy = 2µǫxy (23)

where λ and µ are material parameters called Lame coefficients. Recall that
the stress and strain tensors are symmetrical, i. e. σxy = σyx, etc. For a
plane problem σxz = 0, σyz = 0, ǫxz = 0 and ǫyz = 0. In the −→z direction
two possibilities exist:

σzz = 0 in plane stresses (P.Stre.)

or
ǫzz = 0 en plane strains (P.Stra.)

ǫzz or σzz as the case may be will be deduced from σzz = 2µǫzz + λ(ǫxx +
ǫyy + ǫzz). More details on plane elasticity problems, in particular on the
admissibility conditions of the plane stress hypothesis, can be found in [13]
and [7]. If for our example we place ourselves in plane stress then 2µǫzz +
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λ(ǫxx + ǫyy + ǫzz) = 0 from which ǫzz = −λ
λ+2µ(ǫxx + ǫyy) or again with the

new notation ǫzz = −λ
λ+2µ(ǫ1 + ǫ2).

σ1 = (λ + 2µ − λ2

λ + 2µ
)ǫ1 + (λ − λ2

λ + 2µ
)ǫ2

σ2 = (λ + 2µ − λ2

λ + 2µ
)ǫ2 + (λ − λ2

λ + 2µ
)ǫ1

σ3 = µǫ3

The matrix of elastic compliances depends only on the material, here the ma-
trix C takes into account the condition of plane stresses which is a structural
condition. The matrix C is thus not rigorously the matrix of compliances
of the material but rather a matrix of the type of rigidity. To call it a
compliance matrix is an abuse of language. C which in the case of plane
deformations takes the form:







σ1

σ2

σ3






=







λ + 2µ − λ2

λ+2µ λ − λ2

λ+2µ 0

λ − λ2

λ+2µ λ + 2µ − λ2

λ+2µ 0

0 0 2µ













ǫ1

ǫ2

ǫ3






=







C11 C12 C13

C21 C22 C23

C31 C32 C33













ǫ1

ǫ2

ǫ3







such that:

σp =
3

∑

q=1

Cpg ǫg =
3

∑

g=1

8
∑

r=1

Cpg Bgr qr (24)

3.7. Use of an equilibrium principle: example of static equilibrium

There are several ways to approach this notion. One can use energy
approaches such as the virtual work theorem or principle4. In the quasi-
static regime and in the absence of volume force the "principle" of virtual

works is expressed as:
∫ ∫

∂D

−→
T

−→
D∗ds−

∫ ∫ ∫

D
σ : ǫ(

−→
D∗)dv = 0, where D is the

domain and ∂D its surface on which stress boundary conditions
−→
T = σ−→n or

in displacements
−→
D∗ can be imposed, σ being a statically admissible stress

field, −→n the outgoing surface normal and
−→
D∗ a kinematically admissible

displacement field. In our case,
−→
T and

−→
D∗ are associated, i. e.

−→
D∗ =

−→
D and

σ = Cǫ(
−→
D). A more common version of the virtual work "principle" is to

consider increases in strain energy
∫ ∫ ∫

D
σ : ǫ(

−→
D)dv and the work of external

forces
∫ ∫

∂D

−→
T

−→
Dds and to write stationarity in a variational approach using

the extremum principle: δ
∫ ∫

∂D

−→
T

−→
Dds = δ

∫ ∫ ∫

D
σ : ǫ(

−→
D)dv. This last

expression corresponds to the total potential energy theorem δV = δ(U −

4Virtual work and static equilibrium are two dual notions. More generally, virtual
powers and dynamic equilibrium are two dual notions. If one is postulated as a principle,
the other becomes a theorem.
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T ) = 0 where U is the strain energy and T the work of external forces
and volumetric forces5. There is a wealth of literature illustrating these
examples.

Another possible pedagogical choice is to balance the forces at the nodes.
Consider that forces act at the nodes to deform the elements. Conversely,
the deformed elements induce forces on the nodes. These forces are called
generalized nodal forces. In order to remain compatible with the laws of
physics (energy conservation6), we will quantify these generalized forces so
that the elastic deformation energy contained in the element corresponds
to the work of the generalized force in the corresponding displacement of
the node, as illustrated in Fig. 5. The element can be seen as an object

i

m

n

y

x

j

F .

x

x

du.

x i

m

n

y

x

j

F .

y

y

dv.

y

Figure 5: x-component of the generalized force at node i (left) and y-component (right).

whose edges must follow a shape imposed by the interpolation function. If
a node is moved, the adjacent edges follow the movement as if they had

5However, a particular point must be stressed: the stress field estimated by the fi-
nite element method is not always continuous from one element to another. Indeed, the
displacements are continuous but through their derivatives. If the deformations present
discontinuities at the passage from one element to another, then the stresses also present
some. It is as if external forces corresponding to these discontinuities were acting at the
boundaries of the elements. Let us recall that under the respect of SPH in linear elastic-
ity, the solution is unique. If it respects the law of behaviour, equilibrium and boundary
conditions everywhere, in other words if it is statically and kinematically admissible and
respects the law of behaviour everywhere, then it is the only exact solution of the prob-
lem. In the case of the solution obtained by the finite element method, except for special
cases of absence of these discontinuities (uniform fields for example which can be exactly
described by the interpolation functions), the solution is not statically admissible due to
discontinuities in the stress field at the boundaries of the elements and is therefore not
exact. Nevertheless, it is kinematically admissible and respects the behaviour law. How-
ever, it can be considered accurate for the given problem to which we would add external
forces corresponding to these discontinuities acting at the element boundaries. If these
"parasitic" forces are made to work in the displacements of the element boundaries, we
can then have a form of quantification of the error committed by comparing it to the de-
formation energy of the domain. Some software programs use this procedure to calculate
an error indicator.

6Note that using the expression for the strain energy density in the form σ : ǫ implies
the energy balance of the volume element.
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rigidity and one can imagine that a point force is acting at the node. For
example in any deformation state, if only one change dui is non-zero then
Fxi must be such that the deformation energy of the element, denoted by
Eel., increases by dEel. = Fxidui which corresponds to the work of Fxi in
the small displacement dui, i. e.:

Fxi =
∂

∂ui
Eel. (25)

For the moment, it is assumed that there is no external force applied to the
node other than Fxi that deforms the element. Later, other forces can be
superimposed. The elastic energy "contained" in the element is:

Eel. =

∫ ∫

element
Eel.(x, y) dxdy (26)

where Eel. denotes the elastic energy density which is given by Eel. = 1
2(ǫxxσxx+

ǫyyσyy +2ǫxyσxy) or with the vector notation which is much more convenient
for computer programming Eel. = 1

2(ǫ1σ1 + ǫ2σ2 + ǫ3σ3).

2Eel. = [ǫ1ǫ2ǫ3]







σ1

σ2

σ3






= [ǫ1ǫ2ǫ3]C







ǫ1

ǫ2

ǫ3






= (qB)T CBq = qT BT CBq (27)

Recall that q = [ui, uj , um, un, vi, vj , vm, vn] = [q1, q2, q3, q4, q5, q6, q7, q8] is
the vector of nodal unknowns related to the element for the instant consid-
ered.

Fi =
∂

∂qi

∫ ∫

element

1

2
qT BT CBq =

1

2

∂

∂qi
qT [

∫ ∫

element
BT CB]q (28)

the volume integration only concerns the term textbfBT CB since it alone
depends on (x, y) (or (a, b) according to the space considered, real or para-
metric). The term textbfK =

∫ ∫

element BT C is called the stiffness matrix
of the element. The volume integration technique in the element will be
explained later. The result is:

Fi =
∂

∂qi

1

2

8
∑

i=1

8
∑

j=1

qiKijqj =
8

∑

j=1

Kijqj

Hence, by designating [Fxi, Fxj , Fxm, Fxn, Fyi, Fyj , Fyn, Fym] par
[F1, F2, F3, F4, F5, F6, F7, F8]:

F =





























F1

F2

F3

F4

F5

F6

F7

F8





























= K





























q1

q2

q3

q4

q5

q6

q7

q8





























= Kq (29)
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As shown in Fig. 6, it will then be necessary to consider that the forces

Figure 6: Balance of forces generalized to a node. The actions of the node on the elements
are opposite to the reactions of the elements on the node. The sum of the force vectors
must give the zero vector.

generalised to the nodes are balanced, i.e. that the sum of the components
according to −→x is zero as well as the sum of the components according to
−→y . There will therefore be 2 equations per node and we note that there
are two unknowns, ui and vi, per node in general in solid mechanics, inside
the domain the unknowns are the nodal displacements, at the boundary it
is possible that the unknown is a reaction force. The result is a system of
N equations with N unknowns where N = 2 times the number of nodes in
our example. We must now calculate the integral of equation 26 which is
the same as that of equation 28.

3.8. Volume integration

The example chosen to illustrate this course is in two dimensions. We
will therefore consider for the volume integration a unit of thickness zth. = 1.
The surface ds of Fig. 7 in real space corresponds to the surface ds′ = dadb

in parametric space where −→a ⊥ −→
b . Let us note

−→
dA the path travelled in real

space (x, y) when da−→a is travelled in parametric space and respectively
−→
dB

for db
−→
b . These vectors are expressed as

−→
dA = (∂x

∂a
−→x + ∂y

∂a
−→y )da and

−→
dB =

(partialx
partialb

−→x + ∂y
∂b

−→y )db. As the vectors
−→
dA and

−→
dB may not be perpendicular,

the area must be calculated from the vector product:

dvreal = zth.ds = zth.(
−→
dA ∧ −→

dB) = zth.

[

J11da
J12da

]

∧
[

J21db
J22db

]

which gives dvreal = zth.(J11J22−J12J11)dadb = det.(J)dadb where det.(J) is
of course calculated at the point with coordinates (a, b). It may be possible
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Figure 7: Transformation of a surface element from parametric space (left) to real space
(right).

to write det.(J)(a,b) to make it easier to remember. The change of variables
in equation 26 to go from (x, y) to (a, b) thus gives for the volume integration
in two dimensions and a thickness zth.:

I = zth.

∫ ∫

element
E (x, y) dxdy = zth.

∫ +1

−1

∫ +1

−1
e(a, b) det.(J) dadb

where E (x, y) denotes a density or a weighting, which depends on the nature
of the problem treated, and e(a(x, y), b(x, y)) denotes the density or weight-
ing corresponding to E (x(a, b), y(a, b)), which is explicitly expressed from the
nodal unknowns qi and (a, b). Note that det.(J) is also expressed explicitly
from the nodal coordinates xi and yi and (a, b). The integral I can there-
fore be calculated. The method used to calculate this integral numerically
is classically the Gauss method (see for example [14] for more information).
It consists in making a weighted sum of nG values e(a, b)det.(J(a,b)) to arrive
at:

I ≈ zth.

nG
∑

i=1

wi e(a, b) det.(J)(a,b) (30)

Although the Gaussian method can provide an exact value for polynomials,
the result is usually not an exact value but still suitable. In our case, if we
use four points for the Gaussian integration, i. e. nG = 4, the weights are 1,
i. e. wi = 1, ∀i and the integral becomes:

I ≈ zth.{e(
−1√

3
,

−1√
3

) det.(J)( −1
√

3
, −1

√

3
) + e(

1√
3

,
−1√

3
) det.(J)( 1

√

3
, −1

√

3
)

+e(
−1√

3
,

1√
3

) det.(J)( −1
√

3
, 1

√

3
) + e(

1√
3

,
1√
3

) det.(J)( 1
√

3
, 1

√

3
)}
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3.9. Assembly

Assembly is the term commonly used for the operation which consists
of obtaining the stiffness matrix of the whole structure. It consists of as-
sembling the elementary stiffness matrices. Consider a node i that belongs
to elements C and E. It is possible that a given external force, denoted by−−−→
F ext.

i is applied to this node. The action of element E on node i, −
−→
F E

i , cor-

responds to the reaction of node i on element E denoted by
−→
F E

i . This force
is given by equation 29 which must be completed, here with an exponent E

or C , to specify the element considered. So we write F E = KEqE for the
element E and F C = KCqC for the element C. If only the elements C and
E are linked to node i, it comes:

[

F C
x

F C
y

]

+

[

F E
x

F E
y

]

−
[

F ext.
x

F ext.
y

]

= 0 (31)

This equation expresses the equilibrium of node i which belongs to elements
C and E. The equilibrium of the structure will be formalised by expressing
the equilibrium of all the nodes. Let us denote by d the vector which
contains all the nodal displacements and by f the vector which contains all
the external nodal forces. If the structure has NN nodes and NE elements,
then the equilibrium of the structure can be expressed by:

fg =
NN
∑

k=1

(
NE
∑

m=1

Km
gk)dk =

NN
∑

k=1

Kgkdk (32)

If element n does not contain both g and k nodes, then Kn
gk = 0. There

is therefore generally a very high proportion of zero values in the stiffness
matrix of the structure. Furthermore, let us return to equ. 27 and consider
the term in the ith row and jth column of BT CB:

[BT CB]ij =
∑

k

∑

l[B
T ]ik[C]kl[B]lj

=
∑

k

∑

l[B]ki[C]kl[B]lj =
∑

k

∑

l[B]ki[C]kl[B
T ]jl

since [C]kl = [C]lk we can rearrange the terms to obtain:

[BT CB]ij =
∑

k

∑

l[B
T ]jl[C]lk[B]ki = [BT CB]ji

which shows that K is symmetric. Techniques for storing and inverting such
matrices, which are symmetric with many zero values, have therefore been
developed. The system finally obtained is written Kd = f

3.10. Border conditions and resolution

Considering a node i and a direction, for example −→x , there are two
possibilities to express its condition:
- the displacement ui along −→x is known. The force fi along −→x is then a
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priori unknown,
- lhe force fi along −→x is known. The displacement ui along −→x is then a
priori unknown.
The directions −→x and −→y are independent of these conditions so that we can
know the displacement along −→x and the force along −→y . The external force
can be zero. In the example of Fig. 8 the boundary conditions are:
- all displacements are unknown except for us = vs = ul = vl = up = vp = 0
and vi = 0,
- all sums of nodal forces are known and zero (Fxm = 0, Fym = 0, Fxi = 0,
... ) except Fyk = P1, Fxo = P2 and Fyo = P3 which are non-zero and
Fyi, Fxs, Fys, Fxl, Fyl, Fxp, Fyl are unknown support reactions which will be
determined by the resolution.
For this example with 11 nodes, we end up with a system of 22 equations
with 22 unknowns. For a system of minimal size (22⊗22), it is then necessary
to group the unknown terms in a vector and the known terms in another
one then to constitute the matrix corresponding to the system to be solved.
Two other classical methods exist to constitute the system, the method by
penalisation and the method of Lagrange multipliers.
- The method by penalisation provides a result close to the solution but can
pose problems of matrix conditioning. Not detailed here, it is explained in
numerous works such as [19].
- The method of Lagrange multipliers consists in increasing the system. For
our example the system to be solved would be of size ((22 + 7) ⊗ (22 + 7))
because there are 7 displacements imposed so 7 additional equations and
7 corresponding support reactions which become 7 additional unknowns.
By this method, although the size of the system increases, the computer
processing is simpler and the result of the numerical inversion remains exact
[19] [14].
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Figure 8: Example of modelling boundary conditions.
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3.11. Finite element softwares

It is necessary to find a compromise between simplicity of use and the
possibility of solving, or even customising, the problem. Among the free soft-
ware, we can mention the excellent ASTER and SATURNE codes developed
by EDF, which can be found at http://www.code-aster.org (preferably for
solid mechanics) and http://code-saturne.org (preferably for fluid mechan-
ics). However, their handling and installation is not the easiest. Not free
but graciously given to academics with its sources, a little easier to handle,
we can quote the CAST3M code. The latter is used for the examples of this
course, it can be found at http://www-cast3m.cea.fr.

4. Finite difference method

4.0.1. Taylor’s expansion
The finite difference method consists in differentiating between the noeuds.

Only the principle is explained here. Let us take the example of a calculation
of heat diffusion in the (x, y) plane, the temperature being T (x, y). Recall
that the Taylor series expansion allows us to write:

T (x + dx, y) = T (x, y) +
dx

1!

∂T

∂x
||(x,y)

+
dx2

2!

∂2T

∂x2 |(x,y)

+
dx3

3!

∂3T

∂x3 |(x,y)

+ ...

T (x − dx, y) = T (x, y) − dx

1!

∂T

∂x
||(x,y)

+
dx2

2!

∂2T

∂x2 |(x,y)

− dx3

3!

∂3T

∂x3 |(x,y)

+ ...

The first derivative can therefore be obtained from:

T (x + dx, y) − T (x − dx, y) =
2dx

1!

∂T

∂x
||(x,y)

+
2dx3

3!

∂3T

∂x3 |(x,y)

+ ...

since dx3 << dx, it comes:

∂T

∂x |(x,y)

≈ T (x + dx, y) − T (x − dx, y)

2dx

The second derivative can therefore be obtained from:

T (x + dx, y) + T (x − dx, y) = 2T (x, y) +
2dx2

2!

∂2T

∂x2 |(x,y)

+
2dx4

4!

∂4T

∂x4 |(x,y)

...

since dx4 << dx2, it comes:

∂2T

∂x2 |(x,y)

≈ T (x + dx, y) + T (x − dx, y) − 2T (x, y)

dx2

4.0.2. Calculation of the gradient

In practice dx is not very small but corresponds to the distance ∆x
between two lines of neighboring nodes. Let us consider the mesh of Fig. 9.
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Figure 9: Example of a mesh used in finite difference.

For the sake of simplicity in the presentation of the principle of the method,
this one is considered square, i.e. ∆x = ∆y, we obtain:

∂T

∂x |(x,y)

≈ T (x + ∆x, y) − T (x − ∆x, y)

2∆x
=

Tj+1 − Tj−1

2∆x
(33)

where we can replace ∆x by ∆y and j by i to differentiate according to y.

4.0.3. Calculation of the Laplacian

∂2T

∂x2 |(x,y)

≈ T (x + ∆x, y) + T (x − ∆x, y) − 2T (x, y)

∆x2
=

Tj+1 + Tj−1 − 2Tj

∆x2

(34)
where we can replace ∆x by ∆y and j by i to differentiate according to y.
One of the drawbacks of the method is the need for a regular mesh or a
geometric transformation of this regular mesh.

4.0.4. On-board conditions and resolution

For a steady state heat diffusion calculation the edge conditions must
be expressed. At a node, either the temperature is imposed or the flux is
imposed. It is of course necessary to make some assumptions in order to
extend the calculated evolutions on one side for the nodes which have no
neighbor on the other side. This is another drawback of the method.

5. Finite volume method

In the finite volume method, the integrals of a conservation or equilib-
rium law, i. e. divergence terms, are transformed into surface integrals using
the flux-divergence theorems. Instead of expressing conservation or equilib-
rium at a point (at the node), we express it for a finite volume. In heat
conduction and in the steady state, for example, we express that flow into
the volume = flow out of the volume instead of writing △T = 0. This for-
mulation can sometimes be more robust than the finite element formulation
because it avoids a derivation.
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Figure 10: Finite volume calculation principle. On the left the classical formulation at
the nodes. On the right the finite volume formulation. The arrows symbolize for example
incoming and outgoing heat flows.

6. Boundary element method

6.1. General information about the boundary element method

The boundary element method allows to solve many problems for which
the discretization of a volume is a problem. Indeed, with this method, only
the surface requires discretization. It is commonly used in acoustics, solid
mechanics, aerodynamics, electromagnetism, diffusion, etc. The boundary
elements method can be the subject of a lengthy course, but in summary it
is important to know that:
- Only the domain boundary needs to be discretized. It is composed of
distinct elements. The fields are interpolated inside the elements from the
nodal values.
- It is based on Green’s functions and therefore assumes a linear behavior,
a homogeneous medium and the possibility to superimpose these exact an-
alytical solutions.
- It consists in superimposing at best7 distributions at the boundaries (in
solid mechanics, for example, they are distributions of forces or displace-
ments on boundary elements) to obtain a solution in the domain concerned8.
- The solution is better in the domain far from the boundaries because the
fields are less sensitive to the imperfections of the respect of the boundary
conditions by the interpolation functions of the elements.
- The points where the field values must be computed must be specified
during the post-processing of the solution.
- If the behavior is non-linear, it is possible to use solutions based on Green’s
functions, but the interest of the method is lost because the part of the do-
main in which there are non-linearities must be discretized. One distributes
there fictitious volume actions leading to the same effects as those of the

7The quality depends on the appropriateness of the shape of the chosen distributions.
8Green’s solutions are valid in infinite or semi-infinite media, only values for the points

located inside the domain have a physical meaning and are calculated.
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nonlinearities of behavior9. As always, in this case one must proceed by
iterations.
- The matrix obtained is not symmetrical and one cannot use the algorithms
developed for the finite elements. Nevertheless, it should be noted that the
size of the system is much smaller than with the finite element method since
we go down one dimension of space by passing from the volume to its surface.

6.2. The boundary element method applied to isotropic linear elasticity

In linear elasticity, we can use the reciprocity theorem, also called Somigliana
identity:

∫

D

σ : ǫ∗ dv =

∫

D

C.ǫ : ǫ∗ dv =

∫

D

ǫ : C.ǫ∗ dv =

∫

D

σ∗ : ǫ dv

because the tensor of compliances C is symmetric. The virtual work theorem

expresses that:
∫

D

σ : ǫ(
−→
D∗) dv =

∫

∂D

−→
T

−→
D∗ ds +

∫

D

−→
g

−→
D∗ dv

where g are volumetric forces. We can therefore deduce from these last two
equations that:

∫

∂D

−→
T

−→
D∗ ds +

∫

D

−→
g

−→
D∗ dv =

∫

∂D

−→
T ∗−→

D ds +

∫

D

−→
g

∗−→
D dv (35)

Now, to construct the boundary element method, the volume force
−→
g

∗ is
chosen to be a unitary point force applied within an infinite medium whose
solution was given by Kelvin as schematized in Fig. 11 at left. Let us consider
that there is no volume force in the problem to be solved, i.e. −→

g =
−→
0 10. We

(a) (c)(b) (d)

Figure 11: Unit point volume force applied to a point in the volume (left), to a point on
a flat surface (middle), and to a corner point of an angular surface (right).

discretize the surface partialD into elements defined by nodes. If we apply

9For example for an elastoplastic calculation in solid mechanics, one will superimpose
fictitious volume forces which simulate the plastic deformation.

10Or else we have to integrate in the volume and we lose some interest in the method.
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the unit force −→
g to the node i of this surface for example in the direction

−→x , we can write:
∫

∂D

−→
T

−→
D∗ ds =

∫

∂D

−→
T ∗−→

D ds + ηi(
−→
Ui.

−→x ) (36)

where
−→
Ui is the displacement of the noeud i and ηi a coefficient which depends

on the portion of volume integrated around i as schematized in Fig. 11.
ηi = 1 if we integrate all around the point (Fig. 11a), ηi = 1

2 if we integrate
in a half-space around the point (Fig. 11b) and ηi = f(θ) if we integrate at
an angular point of angle θ (Fig. 11c) for a two-dimensional problem (e.g.
f(π

2 ) = 1
4 , Fig. 11d).

6.3. Spatial discretization and interpolation

Knowing the values at the nodes, we need to interpolate between the
nodes in the same way as the finite element method. Let us assume for
clarity, for our two-dimensional illustration, that the fields vary linearly by
element. The element is a line segment bounded by two nodes. The force−→
g

∗ = 1∗−→x , to denote a unit virtual force according to −→x , is applied to node
i. We can therefore write that:

N
∑

j=1

∫

element j

−→
T

−→
D∗ ds =

N
∑

j=1

∫

element j

−→
T ∗−→

D ds + ηiui

The element j is defined by the nodes m and n. The surface stress vector

at node m is
−→
Tm = txm

−→x + tym
−→y . The displacement vector of node m is−→

Um = um
−→x + vm

−→y . The constraint vector between m and n is interpolated
and the component, according to −→x , for example is αtxn + (1− α)txm in the
element j if α varies from 0 to 1 going from m to n.

N
∑

j=1

∫

element j

−→
T

−→
D∗ ds =

N
∑

j=1

∫

element j

−→
T ∗−→

D ds + ηiui

Consider the first term of this equality. If Lj denotes the length of element
j, using linear interpolation we get:

∫

element j

−→
T

−→
D∗ ds =

∫ α=1

α=0
[(αtxn + (1 − α)txm)−→x + (αtyn + (1 − α)tym)−→y ]

−→
D∗(α) Ljdα

where Lj plays the role of the determinant of the Jacobian matrix. The
integration is usually done with classical numerical techniques. After in-

tegration, one will thus obtain expressions of the type, for a unit force
−→
g

∗

applied at i along −→x :
∫

element j

−→
T

−→
D∗ ds = gxijxmtxm + gxijxntxn + gxijymtixym + gxijyntixyn
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∫

element k

−→
T

−→
D∗ ds = gxikxntxn + gxikxptxp + gxikyptyp + gxikypntyp

6.4. Construction of a linear system of equations

After summation and factorization we get coefficient terms of the nodal

values Gxixn =
∑N

j=1 gxijxn. The term Gxixn relates to a unit force
−→
g

∗

applied at node i along −→x and the component along −→x of the force
−→
T at

node n. In the same way, we can make terms of type Hxixn appear. The

latter, Hxixn, concerns a unit force
−→
g

∗ applied to node i along −→x and the

component along −→x of the displacement
−→
U of node n. We finally obtain two

noeud n

élément j

élément k

noeud m

noeud p

noeud n

élément j

élément k

noeud m

noeud p

Figure 12: Domain, domain boundary, nodes and oriented elements - for example matter
is always on the left in positive progression. Finite medium on the left and hole in an
infinite medium on the right.

equations for each node i:

Gxixntxn + Gxiyntyn = Hxixnun + Hxiynvn + ηiui

Gyixntxn + Gyiyntyn = Hyixnun + Hyiynvn + ηivi (37)

At each node i, we know either txi or ui for the component along −→x and
either tyi or vi for the component along −→y . This allows to group the unknown
terms on one side of the equality to obtain a linear system of equations.

6.5. Calculation of coefficients ηi

The coefficients ηi are simply computed by assuming a uniform rigid

solid translation on the domain, for example
−→
U = −→x ∀i. From eq. 37 it

follows:
ηiui = −Hxixnun − Hxiynvn + ζ

0 = Hyixnun + Hyiynvn (38)

where ζ = 0 in finite medium and ζ = −
∫

∂D∞

−→
T ∗ds = 1 in infinite medium.
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6.6. Softwares

There are few free software for computation with the boundary element
method. However, one can find at www.bempp.org the excellent free code
BEM++ which covers various problems of mechanics and physics in contin-
uous media11. The sources of a code in Fortran for a program dedicated to
plane elasticity are given in [6].

7. So-called "semi-analytical" methods

Semi-analytical (S. A.) methods consist in using analytical solutions for
particular objects such as cracks, cavities, inclusions, heat sources, etc. As
with the boundary element method, these solutions are superimposed as
best as possible to satisfy the conditions of the problem. Contrary to the
finite element or boundary element methods, they generally do not require
any discretization of the medium, the geometry is defined by the position of
the objects in space. Most of the time, they can naturally solve problems
in infinite media. They can also be used to treat problems with singulari-
ties relatively easily. They are very powerful (good accuracy for a relatively
small number of unknowns) for the expected objects but can only solve the
types of problems involving these objects. In general, this type of method is
used to make a large number of objects interact. Problems with singulari-

Figure 13: Some "objects" crack in a field applied at infinity. The problem to be solved
becomes that of the interaction of the objects in the figure on the right.

ties require precautions regarding the interpolation functions in the vicinity
of the singularities if one uses for example the finite element method (see
Appendix C) or the boundary method. A semi-analytical method may be
more appropriate in some cases, especially when the singularities are nu-
merous. Let’s take the example of the pseudo-traction method applied to
cracks. The lips of a crack are free of normal and tangential stresses. If a
cracked medium, which can be considered of infinite size compared to the
size of the cracks, is subjected to a mechanical stress, for example a uniform
tension at infinity, each crack acts as a perturbation of this tensile stress

11Continuous and homogeneous media for this method. Nevertheless, one can solve
problems in heterogeneous media but it will be necessary to assemble sub-problems in
homogeneous media and to connect the boundary conditions appropriately.

30



field. We know the analytical solution for a crack in an infinite medium
subjected to this type of loading. This solution is obtained considering that
the crack is subjected to an internal pressure that cancels the tensile stress
on its lips (Fig. 13 right). We therefore also know the stresses it induces
at the location of another crack. If it induces an additional traction, then
it will be necessary to apply an additional pressure in this other crack to
cancel the stresses on its lips. The solution obtained will not be exact since
the induced stress is not uniform (it decreases when moving away from the
crack "object") and a uniform pressure will not be able to cancel it every-
where. We will therefore try to do the best we can - cancel the average of
the stresses for example - to make the stress on the lips of this other crack
minimal. As these cracks interact with each other and reciprocally, it will
be necessary to write the unknown pressure problem in each crack properly.
We can improve the accuracy, obviously at the expense of the number of
unknowns (we go from one unknown per crack to two unknowns per crack),
by using the analytical solution of a crack loaded by a linearly varying pres-
sure. We can further improve the accuracy since we know the solutions for
pressures that vary according to Legendre polynomial distributions. Obvi-
ously, the polynomial series must be limited to a finite number of terms.
The method is detailed in [10]. It is an example of the use of Galerkin’s
method. A program with instructions and examples can be downloaded at
http://site2christophe.chez.com/. The equivalent inclusion method is an-

Figure 14: Superposition of the field perturbations related to the crack "objects". The
problem is to determine the coefficients Di in order to find the actions Si as well as
possible. The interaction matrix consists of the terms σi→j .

other example of a semi-analytical method based this time on Taylor series.
As proposed in [17], it is part of the collocation methods. It is important to
note that it is not shown to converge. It even seems that it does not con-
verge, which does not prevent it from providing satisfactory results in some
cases. An alternative based on the minimization of the energy related to the
normal and tangential stress discontinuities at the interfaces of the inclu-
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sions is proposed in [9] and should give better results. Thus reformulated,
it is in line with the Ritz-Galerkin type methods.

8. Non-linear computations

Non-linear calculations are generally based on a linearization of the be-
havior by time increment. The temporal evolution is followed by updating
the behavior and possibly the boundary conditions and geometry. There are
two main classes of non-linear calculation schemes - The so-called "explicit"
scheme which consists in progressing slowly with a large number of small in-
crements. The parameters are updated at the end of each increment. - the
so-called implicit scheme which consists in progressing by increments but
which allows a return to the beginning of the increment to check the quality
of the prediction. The updated parameters that allowed the prediction of the
next solution must actually correspond to the next solution. For the same
increment, the calculation is done in a loop until the difference between the
estimated parameters and the updated parameters is smaller than a given
standard. We refer to specialized books to deepen these notions: [20] [8]
[15].

9. Example

The problem of the plate with holes in uniaxial tension is treated by
three methods to illustrate advantages and disadvantages. The material is
a steel of Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.33. The
calculation is conducted in plane stresses (P. Stre.), i. e. σzz = 0 for one
unit of thickness. The plate is square of width 4 a.u. and the hole of radius
1 a.u. where "a.u." denotes an arbitrary unit of length. It is subjected to a
uniaxial stress of axis y of 100 MPa on the edges of type D-C, the other
edges are free of stress as shown in Fig. 15. The spatial discretization is
voluntarily coarse in order to show the imperfections of the methods. In-
deed, very accurate results can be obtained with the tested methods when
they are used with know-how and with computers of suitable power. The
unknowns for the linked systems are:
- for the semi-analytical method (SA) of pseudo-tractions : at order 4, 5
unknowns per straight element and 10 unknowns per circular cavity. As
the software does not allow for symmetry, the contour is discretized into 32
elements, which leads to N = 1 ∗ 10 + 5 ∗ 32 = 170 unknowns.
- for the boundary element method (BEM) : the problem takes into account
the two symmetries. There are 29 nodes and two unknowns per node which
leads to N = 29 ∗ 2 = 58 unknowns. For the complete problem, a number of
unknowns roughly equivalent to that of the S.A. method would be necessary.
- for the finite element method (FEM): the problem takes into account the
two symmetries. There are 70 nodes and two unknowns per node which
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Figure 15: Plate with holes in uniaxial tension. The problem has two axes of symmetry.

leads to N = 70 ∗ 2 = 140 unknowns. The knots of the contour are located
at the same places as for the BEM method.
Aith a fine spatial discretization, the finite element method estimates the

displacements uE
y at point E at 1.725 10−3 in P. Stre. and the stress con-

centration at point A at 359.4 MPa. The table 2 allows a comparison of the
accuracies of the three different methods for a coarse discretization.

Methode uE
y (a.u.) P. Stre. uD

y (a.u.) P. Stre. σA
yy (MPa) P. Stre.

SA 1.728 10−3 2.62 10−3 356.8
BEM 1.703 10−3 2.60 10−3 316.6
FEM 1.651 10−3 2.58 10−3 353.6

Table 2: Displacement along y of points E and D in P. Stre. and stress concentration in
A.

The Figs. 17 present the evolution of stresses along profiles. σh and σvm

respectively designate the hydrostatic and von Mises stresses12.
We note that near the boundaries the boundary conditions are more dif-

ficult to respect by the BEM and SA methods, in particular in the corners
of the plate. This is due to the singularities present in the basis functions
used13. The BEM method presents strong inaccuracies near the boundaries,

12σvm =
√

[(σxx − σyy)2 + (σxx − σzz)2 + (σzz − σyy)2]/2 + 3[σ2
xy + σ2

xz + σ2
zy]

13These basis solutions (green functions, Boussinesq solution, etc.) are superimposed
to obtain the best possible solution.
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Figure 16: Spatial discretization and deformed shape for the boundary element method
(top left) and for the finite element method (top right) and deformed and displacement
vectors for the semi-analytical method (bottom).

especially since these boundaries are angular, at distances from the edge
typically less than the length of the neighboring elements. As expected, the
stress concentrations are well estimated by the SA method, but it should
be noted that this method only treats this type of geometry (circular cav-
ities for porosity14), unlike the other methods which can treat any cavity
shape. The FEM method presents suitable results without any major draw-
back except the volume meshing and a computational power superior to
the two other methods with equivalent accuracy. Fig. 18 shows the stress
discontinuitiesrelated to the deformation discontinuities. The displacements
are continuous but not their derivatives as they pass from one element to
another. We recall that this is related to the interpolation functions whose
domain of definition is limited to the element. Fig. 19 shows the isovals
of the σyy stress obtained by BEM and SA. We notice that the edges are
"heckled" by the BEM method. We also notice that the solution can be
extended in the cavity for the SA method although this has, a priori, no

14Non-intersecting straight cracks for damage.
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Figure 17: Stress distributions along boundaries and for an F-C section. When a value is
shown in the legend, it indicates how far from the boundary or on which radius the point
where the stresses are calculated is located.

physical meaning. For the SA method, the constraint at point C is very
poorly estimated because it is a corner15. On the other hand, it is very well
estimated at point A with this method unlike the BEM. In conclusion, the
BEM and FEM are more flexible than the SA method, which is only efficient
for one type of problem. The FEM method appears to be the most robust.
If there is no problem of spatial discretization or computational means, a
"fine mesh" will provide excellent results. Moreover, the FEM method allows
much more naturally than the two other methods to consider non-linear be-
haviors. It is therefore understandable why this method is the most widely
developed and used.

15With such methods, in this type of corner we have locally sigmaxy 6= σyx. The
solution is not rigorously statically admissible... as for the FEM !
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Figure 18: Map of the stress isovals σyy obtained by FEM. On the left the field per element,
the real result of the calculation, which presents discontinuities and on the right the field
per point which averages the values at the nodes for a more physical representation. On
the top the calculation uses quadrilaterals with four nodes, on the bottom the calculation
uses quadrilaterals with 8 nodes. The contour of the elements is the same in all cases.
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Figure 19: Map of σyy stress isovals obtained by BEM on the left and SA on the right.

Appendix A. Vector operators

The use of vector operators in the formalization makes it possible to
get rid of the chosen coordinate system. Indeed, although the operators
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make the formulas less readable when one is not used to them, it is quite
convenient that the equations thus formalized remain the same in Carte-
sian, cylindrical and spherical coordinates. The symbolic correspondences
are given here for a Cartesian coordinate system with an example of a cylin-
drical coordinate system for the gradient operator. For another coordinate
system, please refer to the equations corresponding to the operator used.
Here are some of the commonly used operators:

−−→
grad designates the operator "gradient". In a three dimensional Cartesian

frame of reference it corresponds to
−−→
grad(A) = ∂

∂x(A)−→x + ∂
∂y (A)−→y + ∂

∂z (A)−→z .

En cylindrical coordinates this operator becomes
−−→
grad(A) = ∂

∂r (A)−→r +
1
r

∂
∂θ (A)

−→
θ + ∂

∂z (A)−→z . If
−→
U is a vector, then its gradient at the material

point P is a tensor grad(
−→
U ) which is worth:

grad(
−→
U ) =







∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z







P

in Cartesian coordinate system. In cylindrical coordinates this operator
becomes:

grad(
−→
U ) =







∂u
∂r

1
r

∂u
∂θ − v

r
∂u
∂z

∂v
∂r

1
r

∂v
∂θ + u

r
∂v
∂z

∂w
∂r

1
r

∂w
∂y

∂w
∂z







P

div designates the operator "divergence". In a three dimensional Carte-
sian frame of reference it corresponds to div(−→q ) = ∂qx

∂x +
∂qy

∂y + ∂qz

∂z . Si σ is
a tensor, the operator provides:

−→
div(σ) =









∂σxx

∂x +
∂σxy

∂y + ∂σxz

∂z
∂σxy

∂x +
∂σyy

∂y +
∂σyz

∂z
∂σxz

∂x +
∂σyz

∂y + ∂σzz

∂z









△ designates the operator "laplacian". In a Cartesian frame of reference
in three dimensions it corresponds to △ = ∂ 2

∂x2 ( ) + ∂ 2

∂y2 ( ) + ∂ 2

∂z2 ( )

−→∇ designates the operator "Nabla". In a three dimensional Cartesian frame

of reference it corresponds to
−→∇ = ∂

∂x( )−→x + ∂
∂y ( )−→y + ∂

∂z ( )−→z . Let us note

the correspondences of notations
−→∇f =

−−→
gradf et

−→∇.
−→
A = div(

−→
A ) and at the
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spatial point P :

∇2(
−→
V ) =









∂2vx

∂x2 + ∂2vx

∂y2 + ∂2vx

∂z2

∂2vy

∂y2 +
∂2vy

∂y2 +
∂2vy

∂z2

∂2vz

∂x2 + ∂2vz

∂y2 + ∂2vz

∂z2









P

The operator T r() computes the "trace", i.e. the sum of the diagonal terms
of a tensor. T r(σ) = σxx + σyy + σzz.

The operator dev() extracts the "deviatoric" part. This one is the com-
plement of the part "spherical" which is 1

3T r()Id. dev(σ) = σ − 1
3T r(σ)Id

where Id is the "identity tensor" such that Idxx = 1, Idyy = 1, Idzz =
1, Idxy = 0, Idxz = 0, Idyx = 0, Idzx = 0, Idyz = 0, Idzy = 0.

Appendix B. Meaning of the determinant of the Jacobian matrix

Appendix B.1. Volume variation and determinant of a 3D Jacobian matrix

Appendix B.1.1. Mixed product

Consider any three vectors
−−→
Oxa,

−−→
Oya,

−−→
Oza. The volume V defined by the

parallelepiped (O, xa, ya, za) is calculated by the mixed product:

V (O, xa, ya, za) = (
−−→
Oxa ∧ −−→

Oya).
−−→
Oza (B.1)

O

xa
ya

za

O

xi

yi

zi

Figure B.20: Calculation of the volume of a parallelepiped by the mixed product.

Appendix B.1.2. Volume change

Let us now consider a matrix F which transforms the vectors
−−→
OPi defined

by the initial positions Pi into vectors
−−→
OPa defined by the current positions

Pa.

F =







Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz






=







∂xa

∂xi

∂xa

∂yi

∂xa

∂zi
∂ya

∂xi

∂ya

∂yi

∂ya

∂zi
∂za

∂xi

∂za

∂yi

∂za

∂zi






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We have therefore for the transformation of
−−→
Oxi = [xi, 0, 0]:

−−→
Oxa = F

−−→
Oxi = xi







∂xa

∂xi
∂ya

∂xi
∂za

∂xi






= xi







Fxx

Fyx

Fzx






(B.2)

We can also consider
−−→
Oyi = [0, yi, 0] and

−−→
Ozi = [0, 0, zi]. If we now pose

xi = yi = zi = 1, then the initial volume Vi of reference defined by [1, 1, 1]
in an orthonormal frame of reference is 1. This unit volume is transformed
by F into an actual parallelepiped volume Va defined by the three vectors
[Fxx, Fyx, Fzx], [Fxy, Fyy, Fzy] and [Fxz , Fyz , Fzz] which are respectively the
transforms of [1, 0, 0], [0, 1, 0] and [0, 0, 1] by F . Let’s calculate this current
volume using the mixed product:

V (O, xa, ya, za)xi=1,yi=1,zi=1 = ([Fxx, Fyx, Fzx] ∧ [Fxy, Fyy, Fzy ]).[Fxz , Fyz, Fzz ]

= FxzFyxFzy − FxzFzxFyy + FyzFzxFxy − FyzFxxFzy + FzzFxxFyy − FzzFyxFxy

= det.F =
Va

Vi
(B.3)

where Vi denotes the initial volume and Va denotes the current volume. It
is therefore clear that physically we must check det.F > 0. For a surface, we

consider for example that ‖−−→
Ozi‖ = ‖−−→

Oza‖ = 1 is the unit of thickness and

that
−−→
Oza ⊥ plane(O, xa, ya) and we find well:

−−→
Oxa ∧ −−→

Oya = surface(O, xa, ya)

Appendix C. Special elements, example for the singularity of frac-

ture mechanics

An introduction to fracture mechanics can be found in [1]. For accurate
fracture mechanics computation, the estimation of crack top fields must be
well treated. In linear elasticity, these have a singularity in r−1/2 where r
is the distance to the crack top. Special elements must therefore be used
to describe this type of evolution. Sometimes the solution consists in using
cleverly already existing elements. For example, for plane or axisymmetric
problems, one can use the classical 8-node quadrilaterals available in the
element libraries of the calculation codes [2] [3] [4]. It is sufficient to degen-
erate the quadrilateral by superimposing three nodes on the crack top and
to move the intermediate nodes so that the interpolation functions adopt
the desired singular variation. Fig. C.21 shows the principle. However, we
must be aware that we are forcing the singularity to vary as the specific
element chosen. In other words, we must be sure that the solution of the
problem admits the type of variation imposed by the element.
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Figure C.21: Use of a classical element to treat a singularity.

Appendix D. Relation displacements - strain tensor

In two dimensions, for a four-node quadrilateral, the transpose of the

gradient tensor of the displacement vector

[

u
v

]

, denoted by gradT , is there-

fore given by:

gradT (

[

u
v

]

) =

[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]

=

[

J11 J12

J21 J22

] [

Nia Nja Nna Nma

Nib Njb Nnb Nmb

]











ui vi

uj vj

un vn

um vm











(D.1)
The tensor of deformations in the plane is given by:

ǫ =
1

2
grad(

[

u
v

]

) +
1

2
gradT (

[

u
v

]

) =

[

ǫxx ǫxy

ǫxy ǫyy

]

(D.2)

ǫ is therefore symmetrical by construction.
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